import ctypes import time import numpy as np from matplotlib import pyplot as plt import data_structures import radar_manager from data_recorder import DataRecorder # Give 10g eth interface an ip and set MTU for better performance # sudo ifconfig enp5s0f0 192.168.2.10 up mtu 5000 # sudo ifconfig enp5s0f1 192.168.3.10 up mtu 5000 # Note that increases the size of rmem_max in the linux kernel improves performance for data recording # this can be done witht the following terminal command # sudo sysctl -w net.core.rmem_max=1048576 def db20(x): return 20*np.log10(np.abs(x)) def db20n(x): x = db20(x) x = x - np.max(x) return x def main(): print('Hello') radar = radar_manager.RadarManager() clk = radar_manager.TIMING_ENGINE_FREQ freqs = np.array([16, 21, 13, 3.25, 3.5, 5, 2])*1e9 pri_lsb = 16e-9 print(freqs * pri_lsb) # Test AD9081 Reg Access print(hex(radar.ad9081_read_reg(0x0A0A))) radar.ad9081_write_reg(0x0A0A, 0x60) print(hex(radar.ad9081_read_reg(0x0A0A))) # CPI Parameters (timing values are in clk ticks) num_pulses = 128 # Should be multiple of udp packet size, currently 4096 bytes, or 1024 samples num_samples = 5000 start_sample = 2000 tx_num_samples = 1024 tx_start_sample = start_sample pri = int(.0004 * clk) print(pri) inter_cpi = 50 tx_lo_offset = 10e6 rx_lo_offset = 0 pri_float = pri / clk print('PRI', pri_float, 'PRF', 1 / pri_float) print('Expected Data Rate', num_samples * 4 / pri_float / 1e6) recorder0 = DataRecorder("192.168.2.128", 1234, packet_size=radar.packet_size) recorder1 = DataRecorder("192.168.3.128", 1235, packet_size=radar.packet_size) recorder0.start_recording('test0.bin', True) recorder1.start_recording('test1.bin', True) radar.configure_cpi(pri, inter_cpi, num_pulses, num_samples, start_sample, tx_num_samples, tx_start_sample, rx_lo_offset, tx_lo_offset) print('Start Running') radar.start_running() # Let it run for a bit time.sleep(2) # Stop running radar.stop_running() # Stop the data recorder recorder0.stop_recording() recorder1.stop_recording() # Parse some data # Find header, recording buffer could have wrapped depending on data rate and how long we ran for recorders = [recorder0, recorder1] for recorder in recorders: headers = [] offset = 0 plot_recorder = recorder hdr_sync = False while not hdr_sync: data = plot_recorder.buffer[offset:offset + 4] sync_word = np.frombuffer(data, dtype=np.uint32)[0] if sync_word == 0xAABBCCDD: hdr_sync = True print('Header found at offset', offset) else: offset += 4 num_cpi = 1 for i in range(num_cpi): # Get Header data = plot_recorder.buffer[offset:offset + ctypes.sizeof(data_structures.CpiHeader)] offset += ctypes.sizeof(data_structures.CpiHeader) headers.append(data_structures.CpiHeader.from_buffer_copy(data)) num_pulses = headers[i].num_pulses num_samples = headers[i].num_samples # Get CPI data_size = num_pulses * num_samples * 4 data = plot_recorder.buffer[offset:offset + data_size] offset += data_size # Check some header fields cpi_times = np.array([x.system_time for x in headers]) / 187.5e6 pps_frac = np.array([x.pps_frac_sec for x in headers]) / 187.5e6 pps_sec = np.array([x.pps_sec for x in headers]) utc_time = pps_sec + pps_frac print(pri, inter_cpi, num_pulses * pri + inter_cpi) print(cpi_times - cpi_times[0]) print(pps_frac) print(pps_sec - pps_sec[0]) # Plot last CPI data2 = np.frombuffer(data, dtype=np.int16) i = data2[0::2] q = data2[1::2] iq = i + 1j * q iq = iq.reshape(-1, num_samples) iq = iq + 1e-15 vmin = -60 vmax = 0 fid, axs = plt.subplots(3) axs[0].plot(iq.T.real, '-') axs[0].plot(iq.T.imag, '--') axs[0].grid() # axs[1].imshow(db20n(iq), aspect='auto', interpolation='nearest', vmin=vmin, vmax=vmax) axs[1].imshow(iq.real, aspect='auto', interpolation='nearest') axs[1].set_ylabel('Pulse Count') axs[1].set_xlabel('Sample Count') iq_freq = np.fft.fftshift(np.fft.fft(iq, axis=1), axes=1) freq_axis = (np.arange(num_samples)/num_samples - 0.5) * radar_manager.BASEBAND_SAMPLE_RATE / 1e6 axs[2].plot(freq_axis, db20n(iq_freq.T)) axs[2].grid() plt.show() if __name__ == '__main__': main()