Files
castelion_radar_alinx_kintex/python/read_data_file.py

118 lines
2.9 KiB
Python
Executable File

import ctypes
import os.path
import time
import numpy as np
from matplotlib import pyplot as plt
import data_structures
def db20(x):
return 20*np.log10(np.abs(x))
def db20n(x):
x = db20(x)
x = x - np.max(x)
return x
def main():
print('Hello')
clk = 187.5e6
# Parse Data
headers = []
offset = 0
file = 'test0.bin'
fid = open(file, 'rb')
# Find header, recording buffer could have wrapped depending on data rate and how long we ran for
hdr_sync = False
while not hdr_sync:
# data = recorder.buffer[offset:offset + 4]
data = fid.read(4)
sync_word = np.frombuffer(data, dtype=np.uint32)[0]
if sync_word == 0xAABBCCDD:
hdr_sync = True
print('Header found at offset', offset)
fid.seek(-4, 1)
# Get the first header
header = fid.read(ctypes.sizeof(data_structures.CpiHeader))
header = data_structures.CpiHeader.from_buffer_copy(header)
fid.seek(-ctypes.sizeof(data_structures.CpiHeader), 1)
# CPI Parameters (timing values are in clk ticks)
num_pulses = header.num_pulses
num_samples = header.num_samples
pri = header.pri
inter_cpi = header.inter_cpi
data_size = num_pulses * num_samples * 4
file_size = os.path.getsize(file)
expected_num_cpis = int(file_size / (ctypes.sizeof(data_structures.CpiHeader) + data_size))
print('File Size', file_size)
print('Expected CPIS:', expected_num_cpis)
for i in range(expected_num_cpis):
# Get Header
data = fid.read(ctypes.sizeof(data_structures.CpiHeader))
headers.append(data_structures.CpiHeader.from_buffer_copy(data))
# Get CPI
data = fid.read(data_size)
# Check some header fields
cpi_times = np.array([x.system_time for x in headers]) / 187.5e6
pps_frac = np.array([x.pps_frac_sec for x in headers]) / 187.5e6
pps_sec = np.array([x.pps_sec for x in headers])
utc_time = pps_sec + pps_frac
print(pri, inter_cpi, num_pulses * pri + inter_cpi)
print(cpi_times - cpi_times[0])
print(pps_frac)
print(pps_sec - pps_sec[0])
# Plot last CPI
data2 = np.frombuffer(data, dtype=np.int16)
i = data2[0::2]
q = data2[1::2]
iq = i + 1j * q
iq = iq.reshape(-1, num_samples)
iq = iq + 1e-15
vmin = -60
vmax = 0
# plt.figure()
# plt.plot(np.diff(cpi_times))
# plt.plot(np.diff(pps_frac))
# # plt.ylim([0, .04])
plt.figure()
plt.plot(iq[0:4, :].T.real, '.-')
# plt.plot(iq[0:4, :].T.imag, '--.')
plt.grid()
plt.figure()
plt.plot(np.mean(iq, axis=0).real, '.-')
plt.plot(np.mean(iq, axis=0).imag, '--.')
plt.grid()
plt.figure()
plt.imshow(db20n(iq), aspect='auto', interpolation='nearest', vmin=vmin, vmax=vmax)
plt.ylabel('Pulse Count')
plt.xlabel('Sample Count')
plt.colorbar()
plt.show()
if __name__ == '__main__':
main()