Files
castelion_radar_alinx_kintex/python/test_cpi.py

136 lines
3.9 KiB
Python
Executable File

import ctypes
import time
import numpy as np
from matplotlib import pyplot as plt
import data_structures
import radar_manager
from data_recorder import DataRecorder
# Give 10g eth interface an ip and set MTU for better performance
# sudo ifconfig enp5s0f0 192.168.2.10 up mtu 5000
# sudo ifconfig enp5s0f1 192.168.3.10 up mtu 5000
# Note that increases the size of rmem_max in the linux kernel improves performance for data recording
# this can be done witht the following terminal command
# sudo sysctl -w net.core.rmem_max=1048576
def db20(x):
return 20*np.log10(np.abs(x))
def db20n(x):
x = db20(x)
x = x - np.max(x)
return x
def main():
print('Hello')
clk = 187.5e6
# CPI Parameters (timing values are in clk ticks)
num_pulses = 128
num_samples = 8192
start_sample = 0
tx_num_samples = 1024
tx_start_sample = start_sample
pri = int(.001 * clk)
inter_cpi = 50
tx_lo_offset = 10e6
rx_lo_offset = 0
pri_float = pri / clk
print('PRI', pri_float, 'PRF', 1 / pri_float)
print('Expected Data Rate', num_samples * 4 / pri_float / 1e6)
radar = radar_manager.RadarManager()
recorder0 = DataRecorder("192.168.2.128", 1234, packet_size=radar.packet_size)
recorder1 = DataRecorder("192.168.3.128", 1235, packet_size=radar.packet_size)
recorder0.start_recording('test0.bin', True)
recorder1.start_recording('test1.bin', True)
radar.configure_cpi(pri, inter_cpi, num_pulses, num_samples, start_sample,
tx_num_samples, tx_start_sample, rx_lo_offset, tx_lo_offset)
print('Start Running')
radar.start_running()
# Let it run for a bit
time.sleep(5)
# Stop running
radar.stop_running()
# Stop the data recorder
recorder0.stop_recording()
recorder1.stop_recording()
# Parse some data
# Find header, recording buffer could have wrapped depending on data rate and how long we ran for
recorders = [recorder0, recorder1]
for recorder in recorders:
headers = []
offset = 0
plot_recorder = recorder
hdr_sync = False
while not hdr_sync:
data = plot_recorder.buffer[offset:offset + 4]
sync_word = np.frombuffer(data, dtype=np.uint32)[0]
if sync_word == 0xAABBCCDD:
hdr_sync = True
print('Header found at offset', offset)
else:
offset += 4
num_cpi = 16
for i in range(num_cpi):
# Get Header
data = plot_recorder.buffer[offset:offset + ctypes.sizeof(data_structures.CpiHeader)]
offset += ctypes.sizeof(data_structures.CpiHeader)
headers.append(data_structures.CpiHeader.from_buffer_copy(data))
# Get CPI
data_size = num_pulses * num_samples * 4
data = plot_recorder.buffer[offset:offset + data_size]
offset += data_size
# Check some header fields
cpi_times = np.array([x.system_time for x in headers]) / 187.5e6
pps_frac = np.array([x.pps_frac_sec for x in headers]) / 187.5e6
pps_sec = np.array([x.pps_sec for x in headers])
utc_time = pps_sec + pps_frac
print(pri, inter_cpi, num_pulses * pri + inter_cpi)
print(cpi_times - cpi_times[0])
print(pps_frac)
print(pps_sec - pps_sec[0])
# Plot last CPI
data2 = np.frombuffer(data, dtype=np.int16)
i = data2[0::2]
q = data2[1::2]
iq = i + 1j * q
iq = iq.reshape(-1, num_samples)
iq = iq + 1e-15
vmin = -60
vmax = 0
fid, axs = plt.subplots(2)
axs[0].plot(iq.T.real, '.-')
axs[0].plot(iq.T.imag, '--.')
axs[0].grid()
axs[1].imshow(db20n(iq), aspect='auto', interpolation='nearest', vmin=vmin, vmax=vmax)
axs[1].set_ylabel('Pulse Count')
axs[1].set_xlabel('Sample Count')
plt.show()
if __name__ == '__main__':
main()